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Abstract

The problem of controlling a single link flexible manipulator is con-
sidered. A self-tuning adaptive control scheme is proposed which consists

of a least squares on-line parameter identification of an equivalent Linear

model followed by a tuning of the gains of a pole placement controller

using the parameter estimates. Since the initial parameter values for
this model are assumed unknown, the use of arbitrarily chosen initiM pa-
rameter estimates in the adaptive controller would result in undesirable

transient effects. Hence, the initial stage control is carried out with a
PID controller. Once the identified parameters have converged, control

is transferred to the adaptive controller. Naturally, the relevant iseues

in this scheme are tests for parameter convergence and minimization of

overshoots during control switch-over. To demonstrate the effectiveness of

the proposed scheme, simulation results are presented with an analytical
nonlinear dynamic model of a single link flexible manipulator.
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1 INTRODUCTION

Automated manipulation is finding increasing use in production,

military and space industries for performing routine, monotonous

and hazardous tasks. The present day manipulators can perform

with sufficiently adequate accuracy at the expense, however, of

payload capacity and operating speed. One possible cost-effective

solution is to build manipulators with lighter links. The lightweight

links reduce the moment of inertia at each joint, permit the use

of direct drive motors and have the advantages of manufacturing

simplicity and lower cost. The next generation of manipulators

would naturally have to be flexible. Mechanical flexiblity, however,

generates a fairly severe problem of control of the manipulator end
effector motion in its work space. This is due to the inevitable

excitation of structural vibrations and the resulting interactions

between these vibrations and the control action which would effect

the accuracy required of the manipulator.

The successful implementation of flexible robots is contingent

upon achieving acceptably uniform performance with regard to

variations in load , task specification, reasonable speeds and the
ability to compensate for any environmental disturbances. In con-

trast to robots consisting of rigid links, the dynamic behavior of

flexible manipulators is not easy to characterize, especially under

conditions of high speed and large amplitude motion. It is not

only the fact that this behavior is described by highly nonlinear

differential equations but also the lack of a precise knowledge of

this description that makes the design of an acceptable control

system, over the total range of its operation, a formidable task.

The dynamic effects due to changes in configuration, load and mo-

ments of inertia, higher speed and unpredictable disturbances tend

to degrade the performance of the flexible manipulator arm. The

control scheme that is to be developed, therefore, has to overcome
these dynamic effects.

This paper attempts at a resolution of difficulties posed by this

problem by employing a self-tuning control approach. The strategy

here briefly consists of (i) a least squares on-line parameter identi-

fication of an equivalent linear model, followed by (ii) a tuning of

the controller gains by an adaptive control algorithm throughout
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the range of the manipulator operation. Thus any changes occur-

ing in the manipulator's dynamic description will automatically

be reflected in the parameter estimates and would, therefore, be

counteracted by updating the controller gains.

An important step prior to parameter identification is to obtain

a valid model structure of the manipulator dynamics. This is de-

rived by analytical modelling based on Lagrange's equation and as-

sumed mode shape functions from the finite element method. This

nonlinear analytical model is used to generate the input/output

data which, in turn, is employed in the least squares parameter

estimation. Since, initially, the parameters are assumed to be un-

known, the parameter estimates obtained during this initial stage

would be unsuitable for updating the controller gains. Hence, dur-

ing this initial stage, a simple PID stabilizing controller is used

with the manipulator model and the parameter identification pro-

cess is initiated. On convergence of the parameters, the control

action is switched over to the adaptive controller. A salient fea-

ture of the present work involves the implementation of a conver-

gence test to minimize any undesirable transient effects following

the switch-over.

2 THE ADAPTIVE POLE PLACEMENT CON-

TROLLER

The control scheme considered here is based on adaptive pole place-

ment. While a variety of configutations can be found in the lit-

erature ( [1], [3], [4] ) for pole placement, the one involving a

Luenberger observer structure (Fig. 1) as suggested by Elliot and

Wolovich [1] is used here. This choice is based on the fact that it

results in a closed loop system of the same order as the open-loop

system (due to pole-zero cancellations). Also it does not add any
undesirable zeros to the plant as might happen with the structure

suggested in [3].

The adaptive pole-placement concept is briefly presented below
in a discrete-time framework:



Let the plant to be controlled have the transferfunction

B(q -I)

A(q-1) "

where q-t isthe backward shiftoperator, and

(1)

n

A(q -x) = 1 + _ a_q-i
i=1

n

B(q -1) = _ biq -i
i=1

so that ithas the description

(2)

(3)

A(q-t)Y(t) = B(q-t)u(t) • (4)

where u(t) and y(t) are the input and output respectively.

The Adaptive Pole Placement Algorithm :

From the structure of Figure 1, one can formulate the following
equations.

QCq-t)g(t) = _{(t,q-t)u(t) + fI(t,q-')y(t) (s)

where

and

,,(t) = g(t) + ,,(t)

Yl.

f((t'q-1) ----Z k,(t)q-'
i=1

n

f/(t'q-l) ---- E hi(t)q -i

i--1

(6)

(7)

(8)

n

Q(q-1) = 1 + _ qiq-' (9)
i----1



u(t) J PLANT I y(t)
+ -I 1

Figure I: Luenberger observer structure for pole placement control

Let
n

A(t,q -I) = 1 -{-_. _(t)q-' (10)
i----I

n

[3(t,q -1) --- _ b,(t)q-' (II)
i=l

where _(t) and bi(t)are the estimates of a_ and b_.

If['((t,q-I) and /:/(t,q-I) are made to satisfythe following re-

lation

I'l(t,q-l)s(t,q -1) + I((t, q-1)._(t, q -I)

= Q(q-')[,4Ct, q -1) - AdCt, q-')] (12)

then the resultingclosed-loop transferfunction becomes

B(q-1) (13)
Ad(t,q-I)



when the identified parameters converge to the plant parameters,
where

n

Ad(t,q -1) -- 1 + __, Ad,(t)q-' (14)
i----1

With this structure, however, the plant cannot be made to track

a step input signal. In order to equip this structure with such a

tracking facility, unity feedback is applied and an integrator is
inserted in the forward path. This can be formulated as

w(0 = _(t) •c + wCt- 1)
_(0 = vC0-y(0

Also equation ( 6 ) should be modified to :

(15)

(16)

,(t) = 9(t) +.(t) (17)

The desired denominator Aa(t,q -1) and the scalar gain c can

be determined from the desired closed-loop denominator D(q-')
by the following equations.

/1000l/iAl--1 1 0 0 ... b2 {Aa2

0 -1 1 0 "'" bs Aa_

: : : : : : •

0 0 0 0 -1 0

where

'dl +

d2

ds

d.

d,_+1

(18)

n+l

D(q -1) = 1 + _ d,iq-' (19)
i=l

Since we can obtain Aa(t,q -1) from equation (18), the I-I(t,q-')

and R(t, q-') can be obtained from equation (12).

The block diagram of this scheme is shown in figure 2.

Note that the step input tracking facility is achieved by increas-

ing the order of the overall system to only n+l.
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Figure2:AdaptivePolePlacementControlScheme UsingLuenbergerObserver
StructurewithIntegralAction

The Least Squares Identification Algorithm:

The estimates b_ and bi used in the control scheme are obtained

by a least squares parameter identification algorithm [4] as follows:

P(t - 2)(I)(t - 1)[y(t) - ¢(t - 1)r0(t - 1)]. (20)
O(t)-O(t-1)+ l+¢(t_l)Tp(t_2))¢(t_l) ,

t>l

P(t- 1) = P(t - 2) - P(t- 2)¢(t- 1)_(t - 1)rP(t - 2)
1 + ¢(t - 1)rP(t- 2)(I)(t - 1)

with 8(0) given and P(-1) is any positive definite matrix,
where

(21)

O(t) : [--(_l(t),--a2(t),""" ,-_zn(t),bl(t),b2(t)," "", $.(t)l r



is the current parameter estimate vector, and

#(t-1) = [_(t - 1),yCt- 2),..., yCt- _), _(t - 1),_(t - 2),..., _(t - _)]_

3 SWITCH-OVER FROM PID TO ADAPTIVE.
CONTROLLER

A critical question in the present control scheme is to determine

an appropriate time to switch from the initial PID controller to

the adaptive controller. The simplest way is to wait till the pa-

rameter estimates resulting from the identification algorithm have

converged to their true values. The following criterion provides a
check on such a convergence.

The Convergence Criterion:

Assume I[ 0(0)[I 2 _< M.
If

then

where

_,,_z[P(t- 1)] _ e_,_,,,[P(-1)]
M (22)

II_(t)II__ _, (23)

_Ct)= _(t) - 0
O(t} : identified parameter vector at time t

0 : actual parameter vector =

[-al, -a2 . . . , -a,_, bl, b2, . . . , bn] r
: the error tolerence for the convergence test

of the identified parameters.

: maximum eigen value of P(t - 1) .



Proof:

From [4] (p. 61), one can get the following inequality

_,_,,,[PCt-1)-1]11_(t)II2_<_=[P(-1)-l]ll _(0)I1' (24)

which implies

_,_o,[PCt- x)] II_(o3II' (2s)II _(t)II_<_
A,,_._[P (- 1)]

Using (22) and (25), it follows that

II O(t)II ' < _11b(o)11' <_ (26)

Thus by computing A,_[P(t - 1)], one can test the convergence

of the parameter estimates.

Switching Logic:

Once the identified parameters have converged to their true val-

ues and the system step response has reached steady state, control

action is switched over from the PID to the adaptive controller.

This is probably the simplest manner to implement the switch-

over without causing any undesirable transients.

An alternative switching logic is proposed here which does not

require the step response to reach steady state. However, this

logic is limited only to those systems that satisfy the conditions

for one-step-ahead control [4].
Assume

(i) the plant to be linear time invariant,

(ii) the switching instant to correspond to t = 0, and

(iii) the desired output trajectory after switching to be the
same as the one that would have been obtained, had the adap-

tive controller been applied to the plant starting at rest from that

position(yo), where

Uo= [y(-1),y(-2),... ,y(-_),,,(-1),,,(-2),-..,,,(-n)]TO (27)



isthe output at the switching instant.

In order to satisfythe lastassumption, a correction input u_(t)

isneeded to compensate forthe terminal conditions resultingfrom

the PID controller.Thus the plant input would be

u(t) = u,(t) + u,(t) (28)

where ud(t) is the input generated by the pole placement algorithm.

The plant output can be expressed as

y(t)= y_(t)+ y0(t) (29)

where

y_(t)= ¢)2"(t)o ;_(0) =0 (3o)
y0(t)= vor(t)0 ;yo(0)= yo (31)

where the subscripts denote the correspondence of the two compo-
nents.

From assumption (iii), y0 (t) = yo for t > 0, and the compensat-

ing input u_(t) is obtained using (31) as:

uJt)= _{yo-[y°(t),yo(t-1),...,yo(t_n+l),O,u,(t_l),...,uo(t_n+l)]ro}

(32)
With a proper choice of the sampling interval, the flexible ma-

nipulator discrete model is found to meet the requirements of one-

step-ahead control. However, this approach is found to be suitable

only in those situations where the deflections are small, and is not
used in the simulation here.

The complete control block diagram is shown in Fig. 3 .

4 SIMULATION RESULTS

The dynamic analytical model of the single link flexible manipula-
tor is described by [5]:
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are 3: Complete Block Diagram of PID-Adaptive Pole Placement Controller
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I m11om2°
mN_ 0 0 ..• mNS ] r

where

Y = tan- 1 w(l, t)
--F- + _ (34)

N

,,,C:,:,t)= _ ¢,(_)r,(t) (351
i=1

/N "/
u- 2._,=1 m.nr,

(_, _ _;),.,

(8' - ,,,_),-N
(33)

u : input torque to the beam
y : tip position

l : the length of the beam

: the hub angle

¢i(x): the mode shape functions of the beam

ri(t) : the generalized coordinates

The desired closed-loop denominator for the adaptive pole place-
ment controller is chosen as

D(q-*) = 1 + d,q-* + d2q-' (36)
where

d, = -2,-_ =_co,_TV_- ¢, (37)
d2 = e-2_wr (38)

where T is the sampling period in seconds.

For computer simulation, the following numerical values are

used: n = 4, N = 2, w = 5, _ = 1, T = 0.1, P(-1) = 10Sis×8,

M = 10 and e = 0.7. The switching from PID to the adaptive
controller occurs at t = 4 secs.

The results are shown in Fig. 4.
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Figure 4: Simulation of Combined PID and Adaptive Pole Place-
ment Control:

(A) referenceinput v(t) and plant output y(t),

(B) plant input u(t),

(C) convergence of identified coefficients of denominator,

(D) convergence of identified coefficients of numerator.
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5 CONCLUSION

A simulation based study for the adaptive control of a singlelink

flexiblemanipulator has been considered. Such a control approach

isof practicalimportance since the dynamic characteristicsof the

manipulator change considerably especiallywhile picking up or re-

leasingpayloads. In such cases unlessthe controlgains are suitably

updated, the performance would be poor.

Since the adaptive control scheme depends on the parameter

estimates from an on-lineidentificationalgorithm, the initialcon-

trolaction iscarried out with a PID controllerduring which the

identificationprocess isinitiated.On convergence of the parame-

ter estimates, control issmoothly transferredto the adaptive con-

troller.A criterionfor testingthe convergence has been presented.

The simulation resultsamply demonstrate the effectivenessof the

proposed scheme.

Experimental verificationof the control scheme on a laboratory

testset-up ispresently in progress.
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